Impacts of a Prekindergarten Program on Children’s Mathematics, Language, Literacy, Executive Function, and Emotional Skills

Christina Weiland and Hirokazu Yoshikawa
Harvard Graduate School of Education

Publicly funded prekindergarten programs have achieved small-to-large impacts on children’s cognitive outcomes. The current study examined the impact of a prekindergarten program that implemented a coaching system and consistent literacy, language, and mathematics curricula on these and other nontargeted, essential components of school readiness, such as executive functioning. Participants included 2,018 four and five-year-old children. Findings indicated that the program had moderate-to-large impacts on children’s language, literacy, numeracy and mathematics skills, and small impacts on children’s executive functioning and a measure of emotion recognition. Some impacts were considerably larger for some subgroups. For urban public school districts, results inform important programmatic decisions. For policy makers, results confirm that prekindergarten programs can improve educationally vital outcomes for children in meaningful, important ways.

High-quality early childhood education equips children with the cognitive skills required for success in elementary school and beyond. Studies show that intensive preschool interventions can be highly cost effective and have positive impacts into adulthood (Campbell, Ramey, Pungello, Sparling, & Miller-Johnson, 2002; Heckman, Moon, Pinto, Savelyev, & Yavitz, 2010; Reynolds, Temple, White, Ou, & Robertson, 2011). From a developmental science perspective, this makes much sense; children’s cognitive skills are malleable at a young age, and thus supporting their early development builds a strong foundation for later educational and intellectual success. Children with higher levels of early vocabulary, reading, mathematics, and executive functioning consistently have greater levels of academic success in elementary and middle school (Duncan et al., 2007; McClelland, Acock, & Morrison, 2006; National Early Literacy Panel, 2008). While the evidence is more mixed for emotional outcomes, developmental theory and some empirical evidence suggest similar links to later academic outcomes for that domain (Entwisle, Alexander, & Olson, 2005; Pianta & Stuhlman, 2004).

Such findings have helped motivate the recent expansion of state- and locally funded prekindergarten programs in the United States. As of 2010, 40 states had implemented prekindergarten programs, enrolling 27% of the nation’s 4-year-olds (Barnett et al., 2010). Evaluations of these programs with the strongest research design to date (regression discontinuity) have confirmed that children enrolled in these programs have higher language, literacy, and mathematics outcomes, on average, at scale (Gormley, Gayer, Phillips, & Dawson, 2005; Gormley, Phillips, & Gayer, 2008; Hustedt, Barnett, Jung, & Goetz, 2009; Hustedt, Barnett, Jung, & Thomas, 2007; Wong, Cook, Barnett, & Jung, 2008). Findings on impacts of public prekindergarten on children’s socioemotional skills come from two quasi-experimental (and nonregression discontinuity) studies and findings were mixed (Gormley, Phillips, Newmark, Perper, & Adelstein, 2011; Magnuson, Ruhm, & Waldhöfle, 2007).

While overall these results are encouraging, research suggests that many preschool programs struggle to attain good instructional quality (Burchinal, Kainz, & Cai, 2011; Peisner-Feinberg & Burchinal, 1997). Accordingly, there have been many efforts to increase preschool quality, including interventions...
that use curricula, teacher professional development, or both as quality supports. Many such interventions have shown efficacy when implemented on a small scale or in research demonstration trials. When such interventions are taken to scale, it is widely recognized that achieving positive impacts is more challenging. The intervention's creators, for example, cannot be as heavily involved, and maintaining quality of implementation is more difficult (Shadish, Cook, & Campbell, 2002).

This study, which used data on approximately 2,000 students enrolled in the Boston Public Schools (BPS) public prekindergarten program, represents an intersection of the literature on the effects of public prekindergarten programs and the literature on quality-support interventions in preschool. Regarding the former, as in the strongest of the prekindergarten studies, we used a quasi-experimental regression-discontinuity (RD) design, with the birthday cutoff for entry into the program providing exogenous treatment eligibility, to estimate the effects of public prekindergarten on children's developmental outcomes. Relevant to the quality-support literature, the BPS program combined two features that are prominent in the literature on preschool quality improvement: research-based (mathematics, language, and literacy) curricula, paired with a coaching system for preschool teachers. Curricula were chosen by the district and implemented at scale without involvement of the curriculum developers. The coaching system was developed by the district. Conditions accordingly represent those more typically encountered in public school districts than in research demonstration trials. Although we were not able to identify causally which of these inputs—curricula, coaching, or simply attending prekindergarten—constituted the most "active" ingredients in the intervention, we are nonetheless able to provide domain-specific and policy-relevant information regarding the pedagogical conditions under which impacts were achieved.

Within this context, we examined impacts of the BPS program on children's language, literacy, mathematics, and emotional development, domains that were directly targeted by the district-chosen curricula. One of our mathematics assessments is new to the literature and addresses some of the content limitations of more commonly used preschool mathematics assessments. We also present impacts on executive function (EF) skills, a developmentally important component of school readiness (Blair & Razza, 2007). EF was not directly targeted by the intervention, but theory and empirical work suggest that there may be spillover effects of cognitively focused curricula on this domain. In addition, we collected detailed data on the care type experienced by control-group children. Thus, we were able to specify what the program is being compared to, which is crucial given that the counterfactual for early childhood program attendance has changed substantially since landmark studies of preschool implemented in the 1960s and 1970s (Campbell et al., 2002; Schweinhart, Barnett, & Belfield, 2005). We also tested for statistically significant differences in impacts by gender, free or reduced lunch status, and race or ethnicity. The previous literature suggests that the effects of preschool may differ by these demographic characteristics. Finally, we present evidence that our results are robust to a set of threats to internal validity. Many of these sensitivity analyses—such as robustness of estimates to attrition from and late entry into the prekindergarten program, different start rules by age on certain measures, differences in reactivity to the testing situation in the treatment and control groups, and use of extant data to aid in the interpretation of produced estimates, as only children who took up an offered seat were tested—are new to the RD prekindergarten literature. Carefully examining these threats is important for advancing research methodology in future evaluations.

Short-Term Effects of Prekindergarten

Many previous studies have summarized the literature on the effects of preschool programs on children's developmental outcomes in great detail (Barnett, 1995; Currie, 2001; Gormley et al., 2005; Wong et al., 2008; Yoshikawa, 1995). In brief, prekindergarten appears to have positive, small-to-large effects on children's cognitive development and small effects on children's prosocial and problem behaviors, although the direction of the latter differs by study.

Focusing specifically on the public prekindergarten studies that share this study's research design (RD), researchers have found statistically significant positive impacts on children's mathematics scores in five of seven examined contexts (one city and six states; effect size range = 0.16–0.50) and on children's receptive vocabulary scores in four of eight examined contexts (one city and seven states; effect size range = 0.17–0.36). On assessments not shared across this body of studies, there was evidence of moderate-to-large effects on children's early literacy skills in six of eight examined contexts (Gormley et al., 2005; Gormley et al., 2008; Hustedt et al.,
Curricula and Coaching in Prekindergarten Settings

Curricula. Theory suggests that implementing explicit, intentional curricula in preschool programs may be effective for several reasons. Such curricula may ensure a continuing emphasis on the skills necessary for children’s early school success, may help keep children engaged and challenged in the classroom, and may also help maintain classroom quality (Klein & Knitzer, 2006). Empirical evidence supports the effectiveness of some language, literacy, mathematics, EF, and socioemotional curricula on directly targeted child developmental domains (Barnett et al., 2008; Bierman et al., 2008; Clements, Sarama, Spitler, Lange, & Wolfe, 2011; Domitrovich, Cortes, & Greenberg, 2007; Fischel et al., 2007). Effective curricula in prekindergarten may also improve children’s outcomes in nontargeted domains. For example, a reading and behavior management curriculum improved children’s EF skills (Bierman, Nix, Greenberg, Blair, & Domitrovich, 2008), and a mathematics-focused curriculum improved children’s oral language and literacy skills (Sarama, Lange, Clements, & Wolfe, in press).

Similarly, EF may be impacted by exposing children to prekindergarten curricula that have an explicit cognitive focus. There are hypothesized to be three distinct but related components of EF—working memory, inhibitory control, and attention shifting (Blair & Razza, 2007). Each is associated with language and math skills among preschool-aged children (Blair & Razza, 2007; Bull & Scerif, 2001; Diamond, Carlson, & Beck, 2005; Gathercole & Pickering, 2000). From a Vygotskian perspective, improved language may support children’s EF skills by enhancing children’s outer and then inner speech, which in turn may then improve EFs as children become better able to plan and monitor their behavior (Vygotsky, 1978). Furthermore, early mathematics, language, and literacy tasks all make demands on children’s working memory, cognitive flexibility, and inhibitory control (Welsh, Nix, Blair, Bierman, & Nelson, 2010). There is uncertainty about the causal direction of the relation between EF and these cognitive skills, but it is plausible that implementing effective cognitively focused curricula in preschool could improve EF.

Coaching. Coaching is an ongoing professional development model in which an expert (the coach) models instruction, observes teachers’ practice, and provides teachers with constructive feedback on their pedagogy (Neuman & Cunningham, 2009). Coaching may or may not involve supporting teachers’ implementation of specific curricula (Aikens & Akers, 2011). Coaching can produce gains in preschool classroom quality, teacher instructional practices, and children’s cognitive and behavioral development (Aikens & Akers, 2011; Bierman et al., 2008; Neuman & Cunningham, 2009; Raver et al., 2009). Thirteen of 14 studies have found that coaching improves preschool teachers’ curriculum implementation (see Aikens & Akers, 2011). Monthly coaching was also part of the professional development model in a randomized controlled trial of Building Blocks, the mathematics curriculum implemented in the current study (Clements & Sarama, 2008). These researchers found large gains in children’s mathematics skills at the end of prekindergarten, as well as high levels of curricular fidelity and higher quality mathematics instruction in treatment classrooms.

Subgroup Effects

Do the effects of preschool education differ by sociodemographic factors, such as socioeconomic status, race or ethnicity, or child gender? Large-scale preschool education in the United States emerged from the desire to reduce gaps between the academic performance of children from poor versus better-off homes (Zigler & Styfco, 2010). Nearly all of the literature evaluating the impacts of preschool education on children is based on low-income populations (the median percentage of
families in poverty in rigorous preschool evaluations identified in a recent meta-analysis was 91%; Leak et al., 2012). There are some hints in the studies conducted on national data sets that the effects of preschool and center-based care on cognitive outcomes are stronger for lower income families (Brooks-Gunn, Gross, Kraemer, Spiker, & Shapiro, 1992; Currie, 2001). In recent years, there has also been strong interest in whether preschool education might reduce related gaps in cognitive performance by race or ethnicity (Magnuson & Waldfogel, 2005). The national Head Start Impact Study found significantly stronger positive effects of the program on a range of Latino children’s developmental outcomes, compared to those of other racial or ethnic groups, in its follow-up to first grade (U.S. Department of Health & Human Services, 2010). The Tulsa prekindergarten study found particularly strong cognitive effects among Latino children (Gormley et al., 2005). Gender has also been of interest as a moderator of preschool impacts. A recent study pooling the Perry, Abecedarian, and Early Training Project data found stronger benefits for girls than boys (Anderson, 2008). However, a meta-analytic study covering a broader range of preschool evaluations did not find this pattern (Kelchen et al., 2012).

In the current study, a substantial proportion of families were not low income, due to the public prekindergarten system not being means tested. We therefore have an opportunity in this study to examine whether the effects of public prekindergarten differ by family socioeconomic background, as well as by race or ethnicity and gender.

In the current study, we address two research questions:

1. What is the impact of the prekindergarten program on children’s early mathematics, language, literacy, EF, and emotional development?
2. Do some child subgroups (as defined by family income, race or ethnicity, or child gender) benefit statistically significantly more from the prekindergarten program than others?

Method

Intervention

Setting. In 2008–2009, the BPS 4-year-old prekindergarten program served approximately 2,045 children in 69 elementary schools. Any child within the city of Boston who turned 4 by September 1 could apply for the program; unlike many public prekindergarten programs in other districts and states (Barnett et al., 2010), children’s access was not limited by their family income or other restrictions. There is no perfect metric to determine how many of the city’s 4-year-olds are enrolled in the BPS prekindergarten program. One metric relies on the U.S. Census’s 2010 estimate of the percentage of children under age 5 in Boston (U.S. Census Bureau, 2012). Based on those numbers, about 34% of the city’s 4-year-olds were enrolled in the BPS prekindergarten program in 2008–2009. A second estimate is based on the number of children who ultimately enroll in BPS kindergarten. In 2009–2010, among children enrolled in kindergarten, 43% of those children had attended prekindergarten in BPS in the previous year (excluding those in special education-only classrooms, as these children would have been served by the district even in the absence of the prekindergarten program due to federal requirements).

Treatment condition. Children who attended the program in the treatment year (2008–2009) received a year of free full-day prekindergarten in an urban public school setting. The evaluation year was the 2nd year of full implementation of the literacy and language curriculum Opening the World of Learning (OWL; Schickedanz & Dickinson, 2005) and the mathematics curriculum Building Blocks (Clements & Sarama, 2007a). The theory of change in BPS was that implementing explicit, intentional, and uniform curricula across classrooms with professional development supports would improve and maintain the quality of support provided to teachers and optimize resource allocation (e.g., through the streamlining of teacher training; Sachs & Weiland, 2010). In a fidelity study conducted the year treatment children were enrolled in prekindergarten, coaches trained on fidelity measures for each curriculum reported that they were implemented with moderately high fidelity (Weiland, Eidelman, & Yoshi-kawa, 2012).

Curricula background and implementation. The OWL curriculum targets children’s early language and literacy skills and includes a social-skills component embedded in each unit, in which teachers discuss socioemotional issues with children and integrate emotion-related vocabulary words. The Building Blocks curriculum targets early mathematics skills, particularly (a) number and simple arithmetic and (b) geometry, measurement, and spatial sense. Three mathematical themes—patterns, data, and sorting and sequencing—are woven into these two main areas. In addition, many activities are intentionally child directed, with children making
up their own problems or creating their own geometric designs (Clements & Sarama, 2007a). Its pedagogical approach has a heavy focus on language, as it requires children to explain their mathematical reasoning verbally. Neither curriculum targets children’s EF skills directly.

OWL and Building Blocks have shown positive effects on children’s outcomes in other studies (Ashe, Reed, Dickinson, Morse, & Wilson, 2009; Clements & Sarama, 2007b; Clements et al., 2011). However, the evidence base for Building Blocks is stronger than that for OWL. Children in eight programs that implemented OWL showed consistently positive effects in studies that used pre–post designs with no control group (Wilson, Morse, & Dickinson, 2009). However, a recent randomized controlled trial in Head Start centers (Dickinson, Freiberg, & Barnes, 2011; Dickinson et al., 2011) found no impacts of OWL on children’s language and literacy outcomes at the end of preschool, and some negative effects at the end of kindergarten and the end of first grade. However, these latter results are somewhat difficult to interpret, as the fidelity of implementation in the treatment groups was relatively low and control classrooms had partially implemented OWL. Teachers were also on average better educated in the eight programs that showed positive effects than in the RCT (65% vs. 17% with a bachelor’s degree [BA], respectively).

Teacher qualifications and professional development supports. All BPS prekindergarten teachers are subject to the same educational requirements and pay scale as K-12 teachers. All prekindergarten teachers must have at least a BA and must obtain a masters degree within 5 years. Placing BPS within the national context, in 2010, 27 of 40 states required a BA for teachers in state-funded prekindergarten programs (Barnett et al., 2010). During the treatment year, 78% of program teachers held masters degrees and 75% had at least 5 years of teaching experience. Prekindergarten teachers received a variety of supports in the year prior to our evaluation and in the evaluation year itself, including curriculum-specific training and weekly to biweekly on-site support from an experienced early childhood coach trained in both curricula. In the 1st year of implementation, teachers were offered 2 days of curricular training in Building Blocks and 5 days in OWL. During the school year, teachers were offered 4 days of training in Building Blocks and 2 days of training in OWL. In the 2nd year of implementation, all teachers new to the prekindergarten program were offered 5 days of curricular training before the start of the school year and 6 days of training during the school year. For more on teacher background characteristics, see online supporting information Appendix S4, Table S1.

Coaching sessions were tailored to address the individual needs of each teacher in implementing the curricula and managing the classroom. All early childhood coaches held masters degrees. On average, early childhood coaches had themselves taught previously in early childhood classrooms for 8.8 years (range = 2–20 years, SD = 4.9 years) and had worked as a district early childhood coach an average of 3.3 years (range = 0.5–7 years, SD = 2.2 years).

Sample

In fall 2009, children in the BPS prekindergarten program and all children who attended the program in the previous year were eligible for the study. Children in special-education-only classrooms were excluded due to concerns about the appropriateness of the assessment battery for children who were not mainstreamed. For a child to participate in the study, the principal, classroom teacher, and parent (or guardian) of the child all had to consent to participate. In fall 2009, all eligible principals and teachers were invited to participate. Of 79 elementary schools with eligible children, 12 principals declined to participate (15%). Approximately 93% of eligible teachers in participating schools agreed to participate in child-level data collection in fall 2009 (N = 250 out 270), an average of 3.7 teachers per participating school. Participating schools and teachers were representative of district schools and teachers (see online supporting information Appendix S3).

We translated parent consent forms into five languages and forwarded them to the child’s home up to three times. Within participating classrooms in the 67 participating schools, 69% of 2,938 eligible children returned consent forms, for a total sample size of 2,018. This represents 54% of eligible children enrolled in the district in fall 2009. Compared to nonparticipants on 14 characteristics, study participants were more likely to live in the east attendance zone (44% vs. 35%; one of three attendance zones; \(p < .001 \)), less likely to live in the north attendance zone (28% vs. 35%; \(p < .001 \)), more likely to have special needs (9% vs. 6%; \(p < .01 \)), more likely to be White (18% vs. 15%; \(p < .01 \)), more likely to be Asian (11% vs. 9%; \(p < .05 \)), and less likely to be Hispanic (41% vs. 46%; \(p < .01 \)). Participating children were nested in 238 classrooms (the difference between this
figure and the 250 consented teachers is due to 7 classrooms having two teachers and 5 teachers agreeing for the study and none who ultimately returned consent forms). The number of participating children per classroom ranged from 1 to 22 (average of 8.5, $SD = 5.2$).

The final sample of 2,018 is racially, linguistically, and socioeconomically diverse. Forty-one percent of the children were Hispanic, 26% were Black, 18% were White, 11% were Asian, and 3% were of mixed, or other, race. Fifty percent of the sample spoke only English, 28% spoke Spanish, and 22% spoke a language other than English or Spanish. Sixteen languages were represented in the “other” category; within this category, the most commonly spoken languages were Vietnamese (30%), Haitian (12%), and Cape Verdean Creole (8%). Approximately 69% of sampled children were eligible for free or reduced lunch.

Children were tested by study-trained child assessors. These assessors had to establish target reliability on the full battery of tests and show good rapport and child management skills in both simulated and real testing situations. All assessors were college educated and approximately one third held masters degrees. On average, the complete battery of nine tests took 45–50 min to administer. Children were tested in a single session if possible, with the session divided into smaller segments if the child showed signs of fatigue. We randomized the order of tests to limit the possibility of biasing results systematically due to child fatigue. The assessors visited classrooms in fall 2009, as close to the start of the school year as teacher and school schedules and study staffing would allow. Assessors were first allowed into schools 2 weeks after the start of school (end of September). Approximately 33% of the data were collected by the end of October, 88% collected by the end of November, and 98% collected by the end of December. Children were assessed in English.

Outcome Measures

Receptive vocabulary. Children’s receptive vocabulary was measured using the Peabody Picture Vocabulary Test III (PPVT–III; Dunn & Dunn, 1997), a nationally normed measure that has been used widely in diverse samples of young children (U.S. Department of Health and Human Services, 2010). The test has excellent split-half and test–retest reliability estimates, as well as strong qualitative and quantitative validity properties (Dunn & Dunn, 1997). It requires children to choose (verbally or nonverbally) which of four pictures best represents a stimulus word. In our analysis, as in other prekindergarten RD studies (Hustedt et al., 2007; Hustedt et al., 2009; Wong et al., 2008), we used the raw score total as our outcome measure.

Prereading and reading skills. The Woodcock–Johnson Letter-Word Identification subscale (Woodcock, McGrew, & Mather, 2001) is a nationally normed, widely used measure (Gormley et al., 2005; Peisner-Feinberg et al., 2001). Children are asked to identify and pronounce isolated letters and entire words fluently. According to the developers, the estimated test–retest reliability of the Letter-Word subscale for 2- to 7-year-olds is 0.96. Consistent with other prekindergarten RD studies (Gormley et al., 2005; Gormley et al., 2008), we used the raw score total as an outcome in our analysis.

Numeracy and early math. The Woodcock–Johnson Applied Problems subscale (Woodcock et al., 2001) is a numeracy and early mathematics measure that requires children to perform relatively simple calculations to analyze and solve arithmetic problems. Its estimated test–retest reliability for 2- to 7-year-old children is 0.90 (Woodcock et al., 2001) and it has been used widely with diverse populations of young children (Gormley et al., 2005; Peisner-Feinberg et al., 2001; Wong et al., 2008). In our analysis, as in other prekindergarten RD studies (Gormley et al., 2005; Gormley et al., 2008; Hustedt et al., 2007; Hustedt et al., 2009; Wong et al., 2008), we used the raw score total as an outcome.

The Applied Problems subtest does not measure geometric and spatial capacities and researchers have raised some concerns regarding the test’s comprehensiveness, appropriateness, and sensitivity in use with young children (Clements, Sarama, & Liu, 2008). Therefore, we also assessed children’s mathematics skills using a subset of 19 items from the Research-Based Elementary Mathematics Assessment (REMA; Clements et al., 2008), as this measure assesses a wider range of early numeracy, geometry, and spatial skills. We used Rasch modeling and other psychometric analysis to assess the shortened REMA’s psychometric properties and confirmed that it was a valid measure of children’s early mathematics skills (Weiland et al., 2012). In all analyses, we used the Rasch-estimated child ability scores as the outcome.

EF skills. Our battery of tests included assessments that tapped three principal dimensions of EF:
working memory, cognitive inhibitory control, and attention shifting. Forward Digit Span and Backward Digit Span (FDS and BDS, respectively; Gathercole & Pickering, 2000; Wechsler, 1986) tapped different components of working memory. BDS measures the central executive component, while FDS measures phonological loop. In both tasks, the assessor reads aloud a string of numbers to the test child, with approximately a 1-s pause between digits. The child then either has to repeat back exactly what the assessor said (in FDS) or reverse the string of numbers (in BDS). Before items are administered, the child must pass a practice trial, demonstrating his or her capacity to sustain attention. The child then either has to repeat back exactly what the assessor said (in FDS) or reverse the string of numbers. The child then either has to repeat back exactly what the assessor said (in FDS) or reverse the string of numbers (in BDS). Before items are administered, the child must pass a practice trial, demonstrating that he or she understands the directions of the task. BDS is scored from 1 to 6, while BDS is scored from 1 to 5. The score represents the child’s digit span memory (i.e., a 2 represents a digit span memory of two digits).

For attention shifting, we used the Dimensional Change Card Sort (DCCS) and a subset of items from the Task Orientation Questionnaire (TOQ; Smith-Donald, Raver, Hayes, & Richardson, 2007). In the DCCS (Frye, Zelazo, & Palfai, 1995), children were shown target cards that differed along dimensions of color and shape (e.g., red and blue, rabbits and boats). Children learned to sort the cards according to one dimension (shape or color) and then were asked to sort the cards on the other dimension. After practice trials to confirm that children understood the rules, the assessor administered up to 10 trials on the DCCS. After 6 trials, if a child had missed more than 1 trial, the testing was discontinued. If the child had missed only 1 or 0 trials, the assessor continued until Trial 10. The final DCCS total score was the number of trials (out of 10) in which the child managed to shift attention from the prior criterion and sort the cards according to the new criterion correctly.

The full TOQ assesses the child’s emotional state and capacity to sustain focus on a set of tasks during a testing session. After administering the child assessment battery, assessors rated each child on 13 items reflecting his or her capacity to sustain attention to the tasks, demonstrate self-regulation, and engage actively to achieve a goal. Each item was rated on a 4-point scale, with clear behavioral descriptors provided for each point on the scale. Using the full sample of children, we conducted a confirmatory factor analysis on the full set of TOQ items and confirmed the presence of three distinct constructs—positive emotion, attention shifting, and impulse control. The fit of the factor model was good (comparative fit index [CFI] = .976, root mean square error of approximation [RMSEA] = .058, standardized root mean square residual [SRMR] = .048). The four items that measured attention shifting included “Pays attention to instructions and demonstration,” “Careful, interested in accuracy,” “Sustains concentration—willing to try repetitive tasks,” and “Cooperates, complies with tester’s requests.” In our analyses, we used a unit-weighted average of responses to these four items as our attention-shifting outcome.

To assess children’s cognitive inhibitory control, we used Pencil Tapping (Diamond & Taylor, 1996). The child was asked to tap twice if the evaluator tapped once and tap once if the evaluator tapped twice. Assessors first administered a set of practice trials to ensure that children understood the rules of the task. Children who passed the practice were then administered 16 total trials. The task measures children’s cognitive inhibitory control and, to a lesser degree, working memory and fine motor activity (Bierman, Nix, et al., 2008). Scores recorded the correct number of trials out of 16 that children achieved. Because of concern that tapping a pencil could prove difficult for preschoolers and might confound cognitive inhibitory control with fine motor skills, we substituted larger plastic kitchen spoons for pencils in this task.

Emotional development. Our chosen emotional development outcomes are all derived from either direct testing or assessor ratings of children. Commonly used measures of children’s behavior in preschool often rely on parent and teacher reports. However, parents and teachers may have different expectations of children based on whether they are entering preschool versus kindergarten, a problem discussed in Gormley et al.’s (2011) evaluation of the Tulsa prekindergarten program’s impacts on children’s socioemotional outcomes. Because our RD design compares preschool children with kindergarten children across an age cutoff, intervention effects on outcomes measured by parent and teacher reports could have been confounded with differences in reporters’ expectations based on the child’s age.

We used three measures of emotional development: the Emotion Recognition Questionnaire (ERQ; Ribordy, Camras, Stefani, & Spaccarelli, 1988), TOQ Positive Emotion, and TOQ Impulse Control (Smith-Donald et al., 2007). The ERQ assesses children’s ability to identify emotions. In the ERQ, children listened to 16 stories that described characters in different situations and were shown a picture corresponding to the situation. They were then asked to identify the character’s feeling by pointing to pictures of happy, mad, sad, or scared faces. The
faces shown matched the gender of the child (i.e.,
boys were shown boy faces and girls were shown

girl faces). Children received 2 points for identifying
the correct emotion, 1 point if they misidentified the
emotion but identified the valence correctly, and 0
points if they identified neither emotion nor valence
correctly, for a maximum score of 32. Before admin-
istering the test, the assessor first established that
the child could identify the happy, mad, sad, or scared
faces correctly. The ERQ has been used with children
in Head Start and has demonstrated sensitivity to
intervention effects (Bierman et al., 2008).

The confirmatory factor analysis described previ-
ously on the TOQ identified three items for positive
emotion: “alert and interactive; is not withdrawn,”
“shows pleasure in accomplishment and active task
mastery,” and “confident”; and three items for
impulse control: “can wait during and between
tasks,” “remains in seat appropriately during test,”
and “modulates and regulates arousal level in self.”
In our analyses, scores on our Positive Emotion and
Impulse Control outcomes were unit-weighted
averages of children’s responses to the position
emotion and impulse control factors, respectively.

Predictors

Forcing variable. Using district administrative
records, we constructed a continuous predictor to
measure how many days from the cutoff the child’s
birthdate fell, centered on September 1. This predic-
tor was the “forcing variable” in our RD analysis—
the clear cutpoint that is the exogenous determinant
of children’s eligibility for treatment (Lee & Lemi-
eux, 2010). Positive integer values indicated that the
child was born before September 1 and negative,
after. A value of 0 indicated that the child was born
on September 1.

Treatment variable. We also created a dichoto-
mous variable that recorded whether children were
in the treatment group (set equal to 1, when cen-
tered child age was 0 or greater) or the control
group (set equal to 0, when centered child age was
less than 0).

Covariates and Descriptive Characteristics

Administrative data. From district administrative
records, we obtained information on children’s race
or ethnicity, home language, free and reduced lunch
status, gender, and special needs status. We used a
vector of dichotomous indicators to represent child
race or ethnicity, each coded 1 when the child was
from the particular racial or ethnic group, 0 other-

wise. Racial or ethnic groups were Asian, Black,
Hispanic, Other, and White. Similarly, we used a
vector of dichotomous indicators to represent chil-
dren’s home language (English, Spanish, or Other),
each coded 1 when the requisite language was the
child’s home language, 0 otherwise. We also con-
structed dichotomous indicators to represent child
free and reduced lunch status, gender, and special
needs status, each coded 1 if the child fell into a
demographic category and 0 otherwise. These cova-
riates have been shown to predict children’s early
cognitive and educational outcomes in other studies,
and there is a consensus in the early childhood edu-
cation literature that these should be controlled in
impact analyses (Clements et al., 2011; Wong et al.,
2008).

Preprogram Child-Care Types

We were also able to obtain parent-reported
information on the primary type of child care that
children experienced before entering the 4-year-old
district prekindergarten program. When registering
their children for prekindergarten, parents were
asked about the child’s last child-care experience,
including the name of the provider, and were asked
to choose one from the following care types: Head
Start, private preschool, public preschool, licensed
day care, family day care, and other or none.
Because parents often disagreed about program type
for the same program name, we cleaned and
recoded these data extensively, confirming the type
for each named program so that codes are consistent
across children. We verified the program type via
extensive web searches and through lists of pro-
grams and types obtained from the Massachusetts
Department of Early Education and Care, the Bos-
ton Early Education Quality Improvement Project,
and the National Association for the Education of
Young Children. Information was often unavailable
regarding whether a family day-care provider was
licensed and parents frequently disagreed regarding
the same provider’s licensing status. Thus, we col-
lapsed licensed family day care and family day care
into one category in our analysis. Other or none
almost always refers to relative care, such as paren-
tal care or care by an immediate relative.

Data Analytic Strategy

Impacts: Basic framework. For the impact esti-
mates, we capitalized on the exogenous variation
in program receipt created by the use of the
district’s age cutoff to determine children’s entry
into the program. The RD approach is useful when there is a clear cutpoint on a “forcing variable,” such as child age, that is the exogenous determinant of children’s eligibility for treatment. On one side of the cutoff, participants are assigned to a particular treatment, whereas on the other side of the cutoff, they are not (Imbens & Lemieux, 2008; Shadish et al., 2002; Thistlethwaite & Campbell, 1960; Trochim, 1984). In our case, children must have turned 4 years old on or before September 1, 2008 to attend the prekindergarten program (the treatment) in the 2008–2009 school year (Year 1). Any differences in average school-readiness outcomes in fall 2009 (the beginning of the 2009–2010 school year, or Year 2) between children who fell just to one side, or the other, of the cutoff, provided unbiased estimates of the causal impact of the program for children of this age. Under the standard RD design, we capitalize on the data of children remote from the birthday cutoff to estimate the treatment effect for those target children whose birthdays fell in the immediate vicinity of September 1, on one side or the other. As is common in RD studies, our results only generalize to students right at the cutoff.

Interpretation of the impact estimates. A standard application of the RD methodology, provided all assumptions are met, provides an unbiased estimate of the average effect of assignment to the treatment condition (vs. control) for participants immediately on either side of the cutoff (Bloom, 2012; Murnane & Willett, 2010). This estimate is known as the intent-to-treat (ITT) estimate as it summarizes the average difference between participants who were assigned to the treatment and control conditions, whether they end up taking up their assigned place in either the treatment or the control group. In our study, however, the only children tested are those who actually showed up in the schools at the point of testing (fall 2009). As such, the treatment estimate is not a classic ITT estimate. It also does not meet the definition of a treatment-on-the-treated (TOT) estimate, or the effect of the intervention on those who actually took up the treatment, as TOT estimates are derived from ITT estimates (Angrist & Pischke, 2008). As such, estimates produced by our study and by previous prekindergarten RD with age cutoff studies are neither pure ITT nor pure TOT estimates. Previous such studies have left this problem unresolved (Gormley et al., 2005; Wong et al., 2008). We took several steps to address this problem (for details concerning our strategies and results, see online supporting information Appendix S1). In brief, we contend that our RD estimates are definitively ITT estimates with potential selection bias. However, simulations and analysis using administrative data suggest that the magnitude of our estimates is closer to TOT than ITT. As such, we interpret them as representing effects for those who enrolled in the program. Later in this article, and more fully in the online supporting information Appendices S1, S2, and S4, we provide evidence that detected effects are robust to a multitude of sensitivity analyses.

Adjusting for attrition and late enrollment. To adjust for children who were missing outcome data due to attrition or late enrollment, we used propensity score weighting. Using administrative records from enrollment applications, we identified students who participated in the prekindergarten program in Year 1 but attrited from the district by time of testing (Year 2; N = 209). We also identified control-group children who were not included in our tested sample because they either attrited before testing (N = 63) or enrolled after the testing period (N = 54). Previous such studies have not accounted for these additional groups of children. Adjusting for them is key, given that they technically should be included in our analysis of those who took up the program. Because we had administrative data for these attriter and late-entry children, we were able to adjust for observed differences between our child assessment (impact) sample of 2,018 and the larger sample including them. Illustrating the importance of this adjustment, in Table S2 in online supporting information Appendix S4, we present descriptive statistics on the demographics of both the tested sample and the attriter and late-entry sample. As shown in the table, there are statistically significant differences between the two samples on 6 of 14 examined demographic characteristics.

To conduct the required adjustments, our propensity score model was as follows:

\[
\text{PS}_{ijk} = \Pr(\text{child_tested} = 1 | \sum X_{ijk} = \frac{1}{1 + e^{-(b_0 + b_1 X_{ij})}}
\]

where PS is the probability that the \(i\)th student, in the \(j\)th classroom of the \(k\)th school would be tested, conditional on \(X\), a vector of student-level covariates (race or ethnicity, gender, home zone, language, and siblings). We fitted this model, obtained predicted values of this propensity that...
a child would be tested, and then inverted these propensities to obtain an inverse probability weight (IPW) that we could use in our subsequent RD analysis to counteract selection into testing (Imbens & Wooldridge, 2009; Murnane & Willett, 2010). Conceptually, our IPW approach upweights children whose entry into the tested or untested condition was not predicted well by the selection model in Equation 1 and for whom we then assume that the endogenous contribution of self-selection plays less of a role in the determination of the RD estimate.

RD impact approach. We incorporated the IP weights into our RD analyses using weighted least squares regression, in the sample of tested children who did possess values on the empirical outcomes. Our impact equation was as follows:

\[
\text{OUTCOME}_{ijk} = \beta_0 + \beta_1 \text{TREAT}_{ijk} + \beta_2 \text{CAGE}_{ijk} + \beta_3 \text{TREAT}_{ijk} \times \text{CAGE}_{ijk} + \beta_4 Y_k + \varepsilon_{ijk}
\]

(2)

where OUTCOME is a generic representation of the child-level test score, TREAT is a dichotomous indicator of treatment or control-group status, CAGE is the child’s age centered on the September 1 cutoff, Y is a vector of school fixed effects, and \(\varepsilon \) is a student-level error term. We estimated robust standard errors to account for the clustering of children within classrooms. We did not include student demographics in Equation 2, as they had already been accounted for through the IPW.

Our analytical strategy and robustness checks for our RD analyses were informed by Lee and Lemieux (2010) and What Works Clearinghouse guidelines (Schochet et al., 2010). We first conducted a graphical analysis, displaying and smoothing the relation between the outcome child age on either side of the cutoff, by superimposing a fitted linear regression line and a smoothed, locally weighted nonparametric regression line on a scatter plot of the raw data. These empirical plots suggested the functional form of the outcome and forcing variable relation and revealed whether there was indeed a discontinuity in the average value of the outcome between the groups assigned to the treatment and control conditions, at the cutoff. Second, because specifying the correct functional form of the relation between outcome and the forcing variable is one of the chief challenges in RD analysis (Imbens & Lemieux, 2008; Ludwig & Miller, 2007), when we specified a linear relation between the two variables, we did so within a window, or bandwidth, on either side of the age cutoff, within which one might reasonably argue that the functional form of the outcome and forcing variable relation was “locally” linear. This approach is a flexible method that allows for the inclusion of covariates, and gives equal weight to all observations that fall into a local bandwidth (Imbens & Lemieux, 2008). This approach also has better boundary properties than other standard nonparametric smoothing strategies (Hahn, Todd, & Van der Klaauw, 2001). A nearly identical version of the method was used to estimate successfully the impacts of Head Start on child mortality rates and educational attainment, in another RD-designed evaluation (Ludwig & Miller, 2007).

Third, as a check on the specification of our local linear regression models, we also fitted a series of additional models in which we replaced the linear specification of the outcome and forcing variable relation with polynomial specifications and interaction terms of the necessary order between the treatment and forcing variables. We compared fit statistics across models and overspecified the models as a robustness check. Although less efficient than when models are underspecified, overspecification yields less biased estimates (Trochim, 1984) and has been used as a strategy in other early childhood RD designs (Gormley et al., 2005; Wong et al., 2008).

As a fourth step, we examined the sensitivity of our results to choice of bandwidth (Lee & Lemieux, 2010). Within selected bandwidths, we reestimated the IP weights from Equation 1, using the sample of observations corresponding to that bandwidth. To provide easy comparisons with other RD prekindergarten studies (Gormley et al., 2005; Wong et al., 2008), we adopted a bandwidth of 6 months on either side of the age cutoff and fitted our different specifications of the RD model (Equation 2) to data within this window. We also employed the cross-validation procedure of Lee and Lemieux (2010) and Imbens and Lemieux (2008) to estimate an “optimal” bandwidth, by minimizing the mean squared error of prediction at the cutoff. Within each bandwidth choice, we repeated the modeling steps outlined above and obtained additional estimates of the treatment effects.

Subgroup analysis. We extended our basic approach to estimate treatment effects for selected subgroups. The subgroups of interest included those defined by race or ethnicity (Black, Latino, White, and Asian), free and reduced lunch status, and gender. Due to the paucity of data for the Other race or ethnicity group, we did not fit models that included this subgroup. Our primary model for estimating these subgroup effects was as follows:
\[
\text{OUTCOME}_{ijk} = \beta_0 + \beta_1 \text{TREAT}_{ijk} + \beta_2 \text{CAGE}_{ijk} \\
+ \beta_3 \text{TREAT}_{ijk} \times \text{CAGE}_{ijk} \\
+ \beta_4 \text{SUBGROUP}_{ijk} \\
+ \beta_5 \text{TREAT}_{ijk} \times \text{SUBGROUP}_{ijk} \\
+ \beta_6 \text{SUBGROUP}_{ijk} \times \text{CAGE}_{ijk} \\
+ \beta_7 \text{TREAT}_{ijk} \times \text{SUBGROUP}_{ijk} \times \text{CAGE}_{ijk} \\
+ \beta_8 Y_k + \epsilon_{ij},
\]

where \(\epsilon\) is a student-level error term. In this model, we represent the different sets of subgroups with a generic predictor, \(\text{SUBGROUP}\). The predictors whose associated slope parameters represent the treatment effects for the different subgroups are as follows: (a) the dichotomous predictor \(\text{SUBGROUP}\), indicating membership in a subgroup of interest; (b) the interaction term \(\text{TREAT} \times \text{SUBGROUP}\); (c) the interaction term \(\text{SUBGROUP} \times \text{CAGE}\); and (d) the three-way interaction term \(\text{SUBGROUP} \times \text{CAGE} \times \text{TREAT}\). We also tested whether it was necessary to include higher order quadratic and cubic terms, adding in the necessary higher order terms for \(\text{SUBGROUP} \times \text{CAGE}\) and \(\text{TREAT} \times \text{SUBGROUP} \times \text{CAGE}\). In each analysis, we included IPW as previously explained to adjust for children who were not tested because of attrition or late enrollment. Equation 3, like Equation 2, does not include a vector of other student characteristics, as they were accounted for through the IPW. Also, for a given subgroup model, the IPW does not include the subgroup characteristic of interest. This is because including the subgroup in the weight prohibits us from including a fixed effect for the subgroup of interest (it would “double count” the subgroup effect). We reported here only those subgroup effects that are robust across bandwidth (see Figures 1 and 2). Results including all statistically significant subgroup effects across all bandwidths are available upon request.

In fitting all our regression models, we used the method of multiple imputation (with 50 imputations) to account for missing data, following Graham (2009). In Table 1, we present summary statistics on the child outcomes, including the percent missing for each outcome.

Results

Descriptive Statistics on Control-Group Care Types

Parents of children in the control group reported the following care types in the year in which their children were too young to enter the BPS program: Head Start (16%), public centers (12%), private centers (29%), nonrelative home-based care (10%), and relative care (33%). Two thirds of control children thus experienced some kind of nonrelative care in 2008–2009 and 57%, center care or preschool.
Main Impacts

Participation in the prekindergarten program led to statistically significant improvements in mathematics, literacy, and language skills (Table 2). Effect sizes were as follows: 0.45 for receptive vocabulary (PPVT), 0.62 for early reading (Letter–Word Identification), 0.58 for numeracy (Applied Problems), and 0.49 for numeracy and geometry (REMA Short). We also found statistically significant, positive impacts on most measures of EF and on one measure of emotional development (Tables 3 and 4). Effect sizes were 0.23 for working memory (both FDS and BDS), 0.20 for inhibitory control (Pencil Tap), 0.27 for attention shifting (DCCS), and 0.18 for emotion recognition (Emotion Recognition Questionnaire). Results for outcomes from the TOQ—attention shifting, positive emotion, and impulse control—were positive in sign but were not statistically significant. Effect sizes were very similar in models with and without the IPW correction for attrition and late entry (online supporting information Appendix S4, Table S3).

Subgroup Impacts

We also found that some subgroups of children benefited more from the program than did others. For instance, children who were eligible for free or reduced lunch benefited statistically significantly more than those who were ineligible on numeracy (Applied Problems), inhibitory control (Pencil Tap), and attention shifting (DCCS; see Figure 1). For numeracy, effect sizes for both groups were in the moderate-to-large range (0.66 and 0.47, respectively). For inhibitory control and attention shifting, the benefits of the treatment accrued nearly entirely to the children who were free or reduced lunch eligible, with a very small or zero effect at the cutoff for the children who were not free or reduced lunch eligible. For all other outcomes, impacts did not vary by free- and reduced lunch status.

In Figure 2, we display our estimates of effect size by children’s race or ethnicity. Impacts were statistically significantly larger for Hispanic children than for White children on 8 of 12 assessments. These differential effects were robust to sensitivity analyses for five assessments: PPVT, Letter-Word ID, Applied Problems, Pencil Tap, and DCCS outcomes (measures across nearly the full range of domains assessed). Effects for Asian children were statistically significantly larger than those for White children on 8 of 12 assessments, but the estimated differences were robust to sensitivity analyses for only the Applied Problems and DCCS outcomes, in part due to the small size of the Asian sample. Effects for Black children were statistically significantly larger than those for White children on 3 of 12 assessments, but these differences were not robust to sensitivity analysis. All outcomes for which there were statistically significant race or ethnicity effects that were robust across bandwidth and functional form also passed general linear hypothesis (GLH) tests. That is, we found that the joint effect of the relevant subgroup characteristics multiplied by the treatment variable was not zero (e.g., F statistic $p < .10$). The exception was the

Table 1
Sample Means (Standard Deviations) for Selected Child Outcomes (N = 2,018)

<table>
<thead>
<tr>
<th></th>
<th>Full sample</th>
<th>Born before cutoff; attended prekindergarten in 2008-2009</th>
<th>Born after cutoff; attended prekindergarten in 2009-2010</th>
<th>% missing total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPVT–III</td>
<td>58.26 (21.84)</td>
<td>69.16 (17.65)</td>
<td>48.08 (20.44)</td>
<td>5.40</td>
</tr>
<tr>
<td>W-J Letter-Word Id</td>
<td>12.44 (7.18)</td>
<td>15.99 (7.03)</td>
<td>9.18 (5.59)</td>
<td>3.87</td>
</tr>
<tr>
<td>W-J Applied Problems</td>
<td>13.74 (5.30)</td>
<td>16.54 (4.35)</td>
<td>11.16 (4.75)</td>
<td>3.87</td>
</tr>
<tr>
<td>REMA Short Form</td>
<td>−0.08 (1.31)</td>
<td>0.62 (1.12)</td>
<td>−0.73 (1.13)</td>
<td>4.36</td>
</tr>
<tr>
<td>Pencil Tap</td>
<td>10.77 (6.00)</td>
<td>12.94 (4.56)</td>
<td>8.69 (6.47)</td>
<td>6.94</td>
</tr>
<tr>
<td>Dimension Change Card Sort</td>
<td>6.64 (4.26)</td>
<td>8.01 (3.46)</td>
<td>5.37 (4.54)</td>
<td>4.61</td>
</tr>
<tr>
<td>Backward Digit Span</td>
<td>1.53 (0.79)</td>
<td>1.78 (0.87)</td>
<td>1.29 (0.62)</td>
<td>9.56</td>
</tr>
<tr>
<td>Forward Digit Span</td>
<td>4.15 (1.28)</td>
<td>4.46 (1.18)</td>
<td>3.86 (1.31)</td>
<td>5.60</td>
</tr>
<tr>
<td>TOQ Attention</td>
<td>3.47 (0.66)</td>
<td>3.61 (0.57)</td>
<td>3.34 (0.71)</td>
<td>5.15</td>
</tr>
<tr>
<td>TOQ Positive Emotion</td>
<td>3.24 (0.56)</td>
<td>3.34 (0.52)</td>
<td>3.15 (0.59)</td>
<td>5.20</td>
</tr>
<tr>
<td>TOQ Impulse Control</td>
<td>3.62 (0.61)</td>
<td>3.70 (0.56)</td>
<td>3.54 (0.64)</td>
<td>5.05</td>
</tr>
<tr>
<td>Emotion Recognition Questionnaire</td>
<td>25.80 (5.08)</td>
<td>27.52 (3.24)</td>
<td>24.20 (5.90)</td>
<td>5.70</td>
</tr>
</tbody>
</table>

Table 3
Estimated Treatment Impact (Standard Errors) on Executive Functioning Outcomes, for Samples of Children Within Selected Bandwidths Around the Age Cutoff on the Forcing Variable

<table>
<thead>
<tr>
<th>BW (in days)</th>
<th>Pencil Tap</th>
<th>Backward Digit Span</th>
<th>Forward Digit Span</th>
<th>Dimensional Change Card Sort</th>
<th>TOQ Attention</th>
</tr>
</thead>
<tbody>
<tr>
<td>365 +</td>
<td>180</td>
<td>287**</td>
<td>365</td>
<td>180</td>
<td>365</td>
</tr>
<tr>
<td>180</td>
<td>180</td>
<td>221**</td>
<td>365</td>
<td>180</td>
<td>365</td>
</tr>
<tr>
<td>287**</td>
<td>365</td>
<td>180</td>
<td>365</td>
<td>365</td>
<td>180</td>
</tr>
<tr>
<td>Treatment</td>
<td>1.39*</td>
<td>1.33†</td>
<td>0.15*</td>
<td>0.16†</td>
<td>0.19*</td>
</tr>
<tr>
<td></td>
<td>(0.54)</td>
<td>(0.79)</td>
<td>(0.07)</td>
<td>(0.10)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>Effect size</td>
<td>0.21</td>
<td>0.21</td>
<td>0.24</td>
<td>0.26</td>
<td>0.31</td>
</tr>
<tr>
<td>Functional form of hypothesized outcome and child-age relation</td>
<td>Linear + int.</td>
<td>Linear + int.</td>
<td>Linear</td>
<td>Linear</td>
<td>Linear</td>
</tr>
<tr>
<td>N</td>
<td>2,018</td>
<td>969</td>
<td>2,018</td>
<td>969</td>
<td>2,018</td>
</tr>
</tbody>
</table>

Note. All fitted regression models include the fixed effects of schools and standard errors are corrected for the clustering of children within classrooms. For all outcomes, we fitted regression models using only samples of observations that fell within 365 and 180 days of the cutoff. We also fit models in samples of children that fell within the optimal bandwidth (BW) determined via the cross-validation procedure (+ denotes the optimal bandwidth). For outcomes where the optimal bandwidth was 365 or 180 days, we fitted two models. Within each analysis, we modeled the outcome as a linear, quadratic, and cubic function of the forcing variable, and we also fit models that included interactions between the child-age variable and the treatment indicator. Preferred models are listed in bold. Effect sizes are expressed in terms of the standard deviation of the control group.

Table 2
Estimated Treatment Impact (Standard Errors) on Language, Literacy, and Mathematics Outcomes, for Samples of Children Within Selected Bandwidths Around the Age Cutoff on the Forcing Variable

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>365 +</td>
<td>180</td>
<td>365</td>
<td>365</td>
<td>180</td>
</tr>
<tr>
<td>180</td>
<td>180</td>
<td>365</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>287**</td>
<td>365</td>
<td>221</td>
<td>365</td>
<td>180</td>
</tr>
<tr>
<td>Treatment</td>
<td>9.00***</td>
<td>7.85**</td>
<td>3.45***</td>
<td>2.81***</td>
</tr>
<tr>
<td></td>
<td>(1.81)</td>
<td>(2.60)</td>
<td>(0.55)</td>
<td>(0.46)</td>
</tr>
<tr>
<td>Effect size</td>
<td>0.44</td>
<td>0.38</td>
<td>0.62</td>
<td>0.59</td>
</tr>
<tr>
<td>Functional form of hypothesized outcome and child-age relation</td>
<td>Linear</td>
<td>Linear + int.</td>
<td>Linear</td>
<td>Linear</td>
</tr>
<tr>
<td>N</td>
<td>2,018</td>
<td>969</td>
<td>2,018</td>
<td>969</td>
</tr>
</tbody>
</table>

Note. All fitted regression models include the fixed effects of schools and standard errors are corrected for the clustering of children within classrooms. For all outcomes, we fitted regression models using only samples of observations that fell within 365 and 180 days of the cutoff. We also fit models in samples of children that fell within the optimal bandwidth (BW) determined via the cross-validation procedure (+ denotes the optimal bandwidth). For outcomes where the optimal bandwidth was 365 or 180 days, we fitted two models. Within each analysis, we modeled the outcome as a linear, quadratic, and cubic function of the forcing variable, and we also fit models that included interactions between the child-age variable and the treatment indicator. Preferred models are listed in bold. Effect sizes are expressed in terms of the standard deviation of the control group. PPVT = Peabody Picture Vocabulary Test; W–J Letter-Word ID = Woodcock-Johnson Letter-Word Identification; W–J Applied Problems = Woodcock-Johnson Applied Problems. *p < .05. **p < .01. ***p < .001.
effect of Letter-Word Id for Hispanics: In a GLH test, we could not reject the null hypothesis that the joint effect of the interactions between the race or ethnicity variables and the treatment indicator was zero, \(F(3) = 1.86, p = .14 \). We found no differences in impacts of the program by gender.

Robustness Checks

We followed best practices as described in the RD literature and conducted extensive sensitivity analyses to confirm the robustness of our findings (Imbens & Lemieux, 2008; Lee & Lemieux, 2010). Threats to the internal validity of our results included: (1) treatment misallocation at the cutoff; (2) nonsmooth or discontinuous variation in observed and unobserved student characteristics around the cutoff; (3) discontinuities in the outcomes at points other than the cutoff; (4) incorrect specification of the functional form of the relation between outcome and forcing variable; (5) sensitivity of results to the choice of bandwidth around the age cutoff; (6) inflated estimates of treatment effect due to treatment-group children being more familiar with, and comfortable in, testing situations than control-group children; (7) the accumulation of Type I error as a result of multiple tests being conducted; (8) sensitivity of results to use of different start rules on the PPVT–III; and (9) sensitivity of results due to use of raw scores rather than IRT-based \(W \) scores on the Woodcock–Johnson Letter-Word Identification and Applied Problems subscales. Threats 1 to 5 and Threats 8 and 9 could result in either an over- or underestimation of the true impact of the treatment, whereas Threat 6 could lead to an overestimate of the true impact and Threat 7 could lead to an overstatement of the statistical significance of our findings. We examined each of these threats in turn and found no evidence that suggested any threats to the internal validity of our identifying assumptions (see online supporting information Appendix S2 for details).

Discussion

We found that a prekindergarten program that combined evidence-based curricula with trained BA- and masters-level teachers and coaching support produced positive effects on multiple domains of school readiness. We detected substantial and statistically significant effects of the prekindergarten program on educational outcomes both in domains that were targeted directly by the prekindergarten curriculum—literacy, language, mathematics, and
emotional development—and in a related but non-targeted domain (EF).

Language, literacy, and mathematics impacts were in the moderate-to-large range (effect sizes 0.45–0.62), whereas EF impacts were in the small range (0.20–0.27). From a developmental perspective, the small positive impacts on children’s EF dimensions—working memory, inhibitory control, and attention shifting—are particularly interesting. Small impacts on EF are consistent with the “spillover” hypothesis described earlier in this article; that is, mathematics, language, and literacy curricula that are cognitively focused may also improve other cognitive developmental domains like EF, even without directly targeting them. For example, evidence suggests that mathematics skills such as number composition and decomposition are quite closely related to working memory (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007). Furthermore, preschool numeracy and geometry activities make demands on children’s ability to shift attention appropriately among problem elements, and to inhibit automatic or prepotent responding to only one aspect of a given problem (Welsh et al., 2010). Language skills such as expressive and receptive vocabulary are associated with better performance on inhibitory control and attention shifting among young children (Fuhs & Day, 2011). The curricula implemented in Boston aimed to enhance these particular mathematics, language, and literacy skills and therefore may have led to simultaneous impacts on EF dimensions. The possible mathematics-EF spillover is particularly promising, given that the optimal approach for promoting EF skills in prekindergarten is unknown and given that early mathematics skills are a robust predictor of later academic achievement in both math and reading (Duncan et al., 2007).

Although we cannot pinpoint specific active ingredients that led to detected effects, we believe the combination of curricula and coaching, implemented with majority masters-level teachers, likely played a major role. The OWL and Building Blocks curricula have shown promising results to date in other studies (Ashe et al., 2009; Clements & Sarama, 2007b; Clements et al., 2011) and we found that teachers implemented them moderately well. Furthermore, it is possible that implementing both a mathematics curriculum and a language and literacy curriculum created a synergistic effect, as both evidence and theory suggest that stronger literacy and language skills can support children’s learning of mathematics skills, and vice versa (Duncan et al., 2007; Harrison, McLeod, Berthelsen, & Walker, 2009; Wagner, Venezky, & Street, 1999).

The mix of children from lower and higher income families in the BPS prekindergarten program may also have contributed to the detected impacts. Boston and Tulsa are the only public pre-kindergarten contexts examined to date in which applications were not restricted by family income requirements, and both achieved particularly strong results. Among older students, having higher achieving peers from higher income families can affect individual children’s achievement, particularly for lower ability students or those from poorer backgrounds (Zimmer & Toma, 2000). The positive effects of having higher ability peers also occur among preschoolers (Henry & Rickman, 2007). Across the 40 states with prekindergarten programs, only 8 did not have requirements prioritizing lower income families (Barnett et al., 2010).

The counterfactual care options in Boston are worth considering as a potential alternative explanation of detected effects. Strong results in Boston could have been a function of lower quality alternative care in the control group. Approximately two thirds of control-group children were enrolled in nonrelative care and nearly half were enrolled in center care, proportions that roughly mirror national trends (Haskins & Barnett, 2010). Making this alternative explanation unlikely, relative to other states, child-care regulations in Massachusetts are among the most stringent in the nation (National Association of Child Care Resource & Referral Agencies, 2011).

In terms of subgroups, we found that impacts on most outcome measures were not statistically significantly different when comparing children from more affluent versus less affluent households. Likewise, focusing on results that were robust to bandwidth and functional form, effects for Hispanic and Asian children were not statistically significantly higher than those of White children for the majority of outcomes. Our findings run counter to some studies that suggest that the positive benefits of preschool accrue mostly or entirely to poorer and minority children (see Currie, 2001). As in the Tulsa prekindergarten program (Gormley et al., 2005), more affluent and White children also benefited from the BPS prekindergarten program.

Nonetheless, findings for Hispanic children versus their White peers should be highlighted, as we found the largest number of statistically significant effects for Hispanics (5 of 12 measured, encompassing all examined cognitive domains). A limitation of our study is that children were tested in English only. However, our findings align with those from the Head Start Impact Study (U.S.
Department of Health and Human Services, 2010) and from the Tulsa prekindergarten evaluation (Gormley et al., 2005), which also found larger impacts on cognitive outcomes for Hispanic children. Evidence suggests that Hispanic children may be particularly likely to benefit from high-quality, supportive instructional contexts (Han, 2008). Furthermore, the rates of growth of children from lower income Spanish-speaking homes can surpass that of native-born children in both word reading and oral language skills (Mancilla-Martinez & Lesaux, 2011). Nationally, Hispanic children are underrepresented in preschool programs and their enrollment rates in recent years have even declined (Fuller & Kim, 2011). In Boston, among Hispanic children entering regular education kindergarten in fall 2009, 39% had experienced the BPS prekindergarten in the previous year, compared to 42% of Blacks, 51% of Whites, and 58% of Asians. Policy-level efforts to increase the enrollment of Hispanic children in prekindergarten programs may be particularly beneficial from both developmental and cost–benefit perspectives.

Ultimately, our study cannot unpack the causal mechanisms behind the detected effects. Our results concern the effects of the combination of these particular prekindergarten curricula and coaching, in the context of Boston’s prekindergarten teaching workforce, on children’s developmental outcomes. Identifying the causal active ingredients should be a priority in future research on the impact of prekindergarten programs. Likewise, due to the RD design, our results generalize only to students at the cutoff. Future research should prioritize using other research designs, such as randomized controlled trials, to inform the degree to which impacts in our study and similar studies generalize to those farther away from the cutoff. An additional limitation of our study is that children were tested in English due to concerns about the psychometric validity of combining scores from the English and Spanish versions of the same measure (e.g., the PPVT and its Spanish-language counterpart, the Test de Vocabulario en Imagenes Peabody use different norming populations, as well as different stop rules).

Despite these limitations, our results provide further evidence on the benefits of public prekindergarten programs for children. In particular, the combination of evidence-based curricula and coaching supports implemented at scale in the context of Boston’s public schooling system brought about educationally and statistically significant improvements in multiple domains of school readiness. As such, the results contribute to the literatures on preschool quality improvement as well as public prekindergarten evaluations.

References

Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: Inhibition,
switching, and working memory. Developmental Neuropsychology, 19, 273–293.

Supporting Information

Additional supporting information may be found in the online version of this article at the publisher’s website:

- **Appendix S1.** Interpreting the RD Estimates.
- **Appendix S2.** Addressing Threats to Validity and Robustness Checks.
- **Appendix S3.** Comparison of Participating and Nonparticipating Schools and Teachers.
- **Appendix S4.** Additional Supporting Tables and Figures.
- **Appendix S5.** References.